Eshwar Kuncham

● 362M, Whittier School, 2200 Vine St, Lincoln, NE 68503, United States

☑ eshwar.research@gmail.com and ekuncham2@unl.edu

J +91-96404-91299 and +1-402-610-3632

Research Interests

Fatigue life prediction, Fatigue loading, Bayesian filtering, Inverse problems, Structural health monitoring, Vibration-based analysis, Kalman filtering, Particle filtering, Interacting filter, Vehicles-bridge interaction, Crack modeling and detection, Mechanical and thermo-mechanical loading.

Work Experience

Jan 2024 – Present	Postdoctoral Research Associate, University of Nebraska-Lincoln
Jun 2019 – Jan 2020	Project Associate, Indian Institute of Technology Mandi
May 2018 - Nov 2018	Research Fellow, Indian Institute of Technology Patna
Nov 2016 – May 2018	Research Assistant, Mahindra École Centrale, College of Engineering
Jul 2015 – Oct 2016	Lecturer, JayaPrakash Narayan College of Engineering

Research Experience

Postdoctoral research: Substructure damage identification based on strain measurement

The research focuses on the development of a damage identification algorithm for bridge structures, utilizing strain measurements through the Substructure technique. Initial validation of the proposed algorithm will be conducted through numerical beam simulations and lab-scale experiments.

As a research team, we are engaged in a large-scale experimental study conducted on an real bridge, we have captured strain data induced by a moving truck. This study encompasses various damage scenarios that have been implemented on the bridge to validate the proposed algorithm.

Doctoral Thesis: Fatigue life assessment for civil infrastructures using Bayesian filtering-based algorithms

My doctoral dissertation discusses predicting remaining useful life (RUL) of a bridge structure robust to real-time uncertainties. In my research, Bayesian filter-based algorithms were developed to predict the RUL of bridge joints based on available sensor data under uncertainty in measurement and loading (mechanical and thermo-mechanical). To reduce computational and instrumentation density costs, an algorithm is developed that integrated substructure predictor models with Bayesian filters. The algorithm was further extended to predict the RUL of a bridge structure under realistic loading conditions by studying the interaction of vehicles with the structure under preexisting and without crack scenarios.

Through this journey, I expertised myself in real-life structural health monitoring (SHM) dealing with high end numerical modelling through coding or software, filtering-based SHM approaches, handling several sensor types (accelerometer and strain sensors, wired and wireless types), data acquisition system, anemometer, etc.

Major projects at IIT Mandi

Aug 2022 – Sep 2023	ARDB: Digital Twin development employing Bayesian filters with substructured predictor models for aerospace application.
Jul 2023 – Sep 2023	Consultancy: Bridge inspection and testing on Karcham Wangtoo HE Project.
Aug 2023 – Sep 2023	Consultancy: Non-destructive Testing on RBI building.
Jun 2019 – Apr 2022	DST-ECR: Vibration-based health monitoring of tensegrity structures incorporating the effects of ambient temperature.

Education

- 2020 2023 Ph.D., Indian Institute of Technology Mandi, [8.23/10].
 2015 2017 M.Tech. Structural Engineering JNTU Hyderabad, [8.86/10].
- 2011 2015 **B.Tech. Civil Engineering** JNTU Hyderabad, [**75.71%**].

Research Publications

Journal Articles

- 1. **Kuncham**, E., Aswal, N., Sen, S., and Mevel, L. Bayesian monitoring of substructures under unknown interface assumption, 2023. **Mechanical Systems and Signal Processing**.
- 2. **Kuncham, E.**, Sen, S., Kumar, P., and Pathak, H. An online model-based fatigue life prediction approach using extended Kalman filter, 2022. **Theoretical and Applied Fracture Mechanics**.
- 3. **Kuncham**, **E**., and Sen, S. Fatigue assessment of bridges using interacting filtering approach with substructured predictor model based on current health, 2024. **Structural Health Monitoring**.
- 4. Hoda, Md A., **Kuncham**, **E.**, and Sen, S. Development of efficient probabilistic health assessment approach for high dimensional civil infrastructures, 2024. **Structures**.
- 5. Faridi, Md. A., **Kuncham**, E., Roy, K., and Singhal, V. Using limited roving sensors to monitor bridge subjected to random traffic load, 2024. **Journal of Civil Structural Health Monitoring.**
- Kuncham, E., Hoda, Md A., and Sen, S. Force estimation in bridge substructure boundary under vehicle loading using interacting filtering approach, 2024. International Journal of Advances in Engineering Sciences and Applied Mathematics.
- 7. Hoda, Md. A., **Kuncham**, **E**., and Sen, S. Response and input time history dataset and numerical models for a miniaturized 3D shear frame under damaged and undamaged conditions, 2022. **Data in Brief**.
- 8. Shereena, O.A, **Kuncham, E.**, Sen, S., Jain, P. C., and Mevel, L. Mitigating high dimensionality in damage identification for plate-like structures through substructuring with interacting filtering-based approaches. **Engineering Structures**. (*under review*)

Conference

- 1. Aswal, N., **Kuncham**, E, Sen, S., and Mevel, L. Subdomain Fault Isolation for Linear Parameter Varying Systems through Coupled Marginalized Particle and Kitanidis Filters. 22^{nd} **IFAC World Congress 2023**. Yokohama, Japan.
- 2. Rashid, S., **Kuncham**, E., and Sen, S. Integration of numerical and experimental approaches for ultrasonic wave propagation-based damage detection. **CARRS 2023**. IIT Hyderabad, India.
- Kuncham, E., and Sen, S. Development of computationally efficient health benchmarking approach
 for a bridge structure by coupling substructuring technique within interacting filtering approach. 10th
 EWSHM 2022. Palermo, Italy.
- Aswal, N., Kuncham, E., Sen, S., and Mevel, L. Robust Interacting Particle-Kalman Filter based structural damage estimation using dynamic strain measurements under non-stationary excitation an experimental study. 10th SHMII 2021, Porto, Portugal. (online)
- 5. **Kuncham**, E., Hoda, Md A., and Sen, S. Identifying the cracks in beam structures using a simplified substructure technique. 4^{th} **SICE 2022**. IIT Hyderabad, India.
- 6. Hoda, Md A., **Kuncham**, E., and Sen, S. Detection of edge crack in beam like structure modelled as rotational spring by using Bayesian filtering. 67^{th} **ISTAM 2022**. IIT Mandi, India.

- 7. **Kuncham, E.**, and Sen, S. Damping Estimation in Composites Structures: An Inverse Damping Modelling Technique. **NDE 2019**. Bengaluru, India.
- 8. **Kuncham**, **E**., and Pasupuleti, V. D. K. Progressive Collapse Analysis of Two Dimensional Reinforced Concrete Framed Structure. **ICIIF 2018**. Ahmedabad, India.
- 9. Chilakalapallii, R. V., Palvai, P., **Kuncham, E.**, and Pasupuleti, V. D. K. Lateral Response Reduction of Tall Buildings Using Portal Frame as TMD. **ICETCE 2018**. Anantapuramu, India.
- Kuncham, E., and Pasupuleti, V. D. K. Structural Vibration During Progressive Collapse. ICVOP 2017.
 IIT Guwahati, India.
- 11. **Kuncham, E.**, and Pasupuleti, V. D. K. Progressive Collapse Analysis of Three- Dimensional Reinforced Concrete Structures. **ICEE 2017**. Padang, Indonesia.

Skills

Coding & Scripting

MATLAB, Python, LaTeX, MS office.

Software

Abaqus CAE, CSiBridge, ETABS, SAP 2000, LISA, AutoCAD, Sketchup.

Academic Responsibility

During my time at IIT Mandi, I was a teaching assistant in bachelor and masters courses, such as, Strength of materials and structures, Design practicum, Reverse engineering, Structural dynamics with application to earthquake engineering, and Structural engineering laboratory.

I was part of the team that set up the i4S laboratory. We purchased the equipments and sensors related to non-destructive testing and vibration-based testing. I became familiar with the installation process of horizontal shake table, wired and wireless sensors (strain and acceleration), data acquisition systems, and anemometer. I was also part of a team that conducted laboratory tests and real-time bridge evaluations across Himachal Pradesh, India.

Academic Awards and Achievements

2020	Certificate of appreciation for Teaching Assistant, in the National Workshop on "Ad-
	vanced Composites for Aerospace: Design, Manufacturing and Condition Monitoring Per-
	spective. Feb 11-15 at Indian Institute of Technology Mandi.
2017	Best Presenter Award, 4th ICEE 2017 Padang, Indonesia.
2015	Merit Award, Jayaprakash Narayan College of Engineering.
2009-2011	Merit Scholarship , for completing intermediate education from the same institute.

Interests

Playing badminton; Backpacking; Crafting

References

Dr Daniel Linzell

Professor, Department of Civil Engineering University of Nebraska–Lincoln Address: KH A641E, Kiewit Hall, 1700 Vine St, Lincoln, Nebraska 68588-0642 Email id: dlinzell@unl.edu

Dr Subhamoy Sen

Associate Professor, Indian Institute of Technology Mandi, Address: i4S Laboratory, A-14 Building, North Campus, IIT Mandi, Himachal Pradesh 175005, India. Email id: subhamoy@iitmandi.ac.in